首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3627篇
  免费   650篇
  国内免费   1361篇
  2024年   9篇
  2023年   135篇
  2022年   124篇
  2021年   197篇
  2020年   297篇
  2019年   302篇
  2018年   254篇
  2017年   275篇
  2016年   285篇
  2015年   248篇
  2014年   245篇
  2013年   380篇
  2012年   220篇
  2011年   214篇
  2010年   178篇
  2009年   216篇
  2008年   243篇
  2007年   234篇
  2006年   208篇
  2005年   183篇
  2004年   147篇
  2003年   140篇
  2002年   118篇
  2001年   94篇
  2000年   102篇
  1999年   70篇
  1998年   59篇
  1997年   56篇
  1996年   41篇
  1995年   38篇
  1994年   37篇
  1993年   29篇
  1992年   28篇
  1991年   23篇
  1990年   26篇
  1989年   26篇
  1988年   23篇
  1987年   16篇
  1986年   16篇
  1985年   14篇
  1984年   12篇
  1983年   15篇
  1982年   15篇
  1981年   14篇
  1980年   5篇
  1979年   5篇
  1978年   4篇
  1977年   5篇
  1972年   3篇
  1958年   2篇
排序方式: 共有5638条查询结果,搜索用时 156 毫秒
111.
气候和土地利用变化影响下生态屏障带水土流失趋势研究   总被引:2,自引:0,他引:2  
郎燕  刘宁  刘世荣 《生态学报》2021,41(13):5106-5117
受气候和地形等诸多因素影响,我国"两屏三带"国家生态屏障带中的川滇-黄土高原区域和南方丘陵带水土流失十分严重,自然灾害频发。但是,针对川滇-黄土高原区域和南方丘陵带水土流失时空格局变化,特别是未来气候变化和土地利用变化影响下水土流失变化趋势的研究很少。因此,本研究以川滇-黄土高原区域和南方丘陵带为研究对象,利用修正土壤流失方程(RUSLE)定量分析了该区在2000-2015年水土流失的时空变化规律及其影响因素,并预测了在RCP2.6和RCP4.5的未来气候情景下及土地利用变化条件下水土流失的变化趋势。研究结果表明:(1)黄土高原地区在植被恢复的积极作用下,水土流失显著缓解;(2)川滇地区的西南部因植被盖度的增长和降雨的减少水土流失显著缓解,但四川省境内人口密集区农田面积增加以及降水增加造成水土流失大幅度加剧;(3)南方丘陵带受降水增加影响导致了部分区域的水土流失恶化;(4)在未来气候变化情景下,由于大部分地区降雨将减少使土壤侵蚀趋于缓解,但四川、黄土高原和南方丘陵带大部分地区仍然面临未来农田面积增加带来的水土侵蚀压力。考虑到未来气候变化情景下降雨减少的趋势,建议在黄土高原地区提高草地在土地利用类型中的占比,在减少耗水量的同时维持地表盖度,缓解水土侵蚀;此外,各区域仍需控制农田面积,而且需通过加强坡耕地上保水保土耕作措施降低农田区域的土壤侵蚀压力。  相似文献   
112.
113.
BackgroundResearch to date suggests that nickel affects not only the metabolism of vitamin B12 but also folates and thus may affect hematopoiesis processes.ObjectiveThe aim of the study was to examine the relationship of nickel (Ni) status to red blood cell (RBC) parameters and serum vitamin B12, folate and homocysteine concentrations in the course of normal pregnancy and in pregnant women with anemia.MethodsThe study included fifty-three pregnant women recruited to the study from the Lower Silesia region of Poland, 17 % of whom developed anemia. Nickel concentration was determined in urine, whole blood and food samples by atomic absorption spectrometry. At the same time as the food and urine samples were taken, blood was also collected for the determination of RBC parameters and serum vitamin B12, homocysteine and folate concentrations.ResultsThe median reported Ni intake, and the urinary and whole blood nickel contents for the studied pregnant women for the first trimester were respectively – 162.46 μg/day, 3.98 μg/L and 3.32 μg/L; for the second trimester – 110.48 μg/day, 6.86 μg/L and 1.04 μg/L; and for the third trimester – 132.20 μg/day, 3.41 μg/L and 0.70 μg/L. With regard to Ni concentration in whole blood (p = 0.0204) and in urine (p = 0.0003), the differences in the values for individual trimesters were statistically significant. The whole blood Ni level was significantly higher (9.28 vs 3.62 μg/L, p = 0.0114), while the concentration of homosysteine was significantly lower (4.09 vs 5.04 μmol/L, p = 0.0165) in pregnant women with anemia compared to those without anemia. The whole blood Ni concentration was negatively correlated with almost all RBC parameters in non-anemic pregnant women.ConclusionsNi status changes with the development of normal pregnancy, and in the case of anemia, an increase in Ni concentration in whole blood is observed. The demonstrated correlations between the Ni status in pregnant women and RBC parameters as well as serum vitamin B12 and folate concentrations suggest that nickel is associated with the methionine–folate cycle, iron homeostasis and bacterial synthesis of vitamin B12 in humans.  相似文献   
114.
115.
The conflict between cultivated land protection and economic development has become increasingly acute in recent years. Despite, intensive researches made on this conflict, little attention has been paid to the spatial correlation of variables. In view of this, the paper introduces the spatial panel regression model to estimate, and test whether the relationship between economic growth and cultivated land conversion conforms to Kuznets curve. Research results show that the area of converted cultivated land in China exhibits strong spatial auto-correlation; the spatial panel model with time effect and fixed effect is more stable and significant than conventional panel mode, and that the relationship between economic growth and cultivated land conversion agrees with the inverted U-shape of Kuznets curve, with inflection point occurring when average per capita GDP reaches ¥31330.93 (calculated at comparable price of 1999). On the basis of analysis, it is suggested that the government, with a view to developing economy alongside protecting cultivated land, should attach more importance to land use and planning in the future, pay more attention to the spatial correlation of cultivated land planning in adjacent areas and make greater efforts to increase the input–output ratio of land.  相似文献   
116.
韩志萍  程慧莹  王飞 《菌物学报》2020,39(8):1520-1529
桔黄赛多孢菌Scedosporium aurantiacum是慢性肺病患者的常见呼吸道定植菌,在免疫缺陷人群中可引起侵袭性感染,致死率高,但由于致病机理不明,目前仍然缺乏有效的防控手段。我们在前期研究中,通过差异蛋白组学及酶工程技术发现分泌胰蛋白酶是桔黄赛多孢菌的潜在毒力因子,目前对这种蛋白酶的遗传信息、结构及致病机制并不清楚。本研究用Superdex S-200分子筛和DEAE-Sepharose离子交换两种填料将这种蛋白酶分离纯化出来,通过酶谱验证了纯化效果。进一步研究发现,这种胰蛋白酶对bFSR、bLSTR和bEKK 3种底物的水解性能最佳,对zFR和bzLR的水解性能最差。酶解最快的反应所对应的Km为6.09μmol/L,Vmax为13.01μmol/L/s,Kcat为23.65/s;酶解最慢的反应所对应的Km为29.94μmol/L,Vmax为11.35μmol/L/s,Kcat为20.63/s。研究结果对于填补赛多孢菌毒力因子研究的空白、针对毒力因子开发新型的抗真菌药物和治疗方法都具有重要意义。  相似文献   
117.
Grape seed procyanidins (GSPs), widely known for their beneficial health properties, fail to bring about the expected improvement in piglets’ growth performance. The effects of dietary supplementation with GSPs on nutrient utilisation may be a critical influencing factor. Hence, the purpose of this study was to investigate the effects of dietary supplementation with GSPs on nutrient utilisation and gut function in weaned piglets. One hundred and twenty crossbred piglets were allocated randomly to four treatment groups, with three replicate pens per treatment and 10 piglets per pen. Each group was given one of the four dietary treatments: the basal diet (control group) or the basal diet with the addition of 50-, 100- or 150-mg/kg GSPs. The trial lasted 28 days. Faeces were collected from d 12 to 14 and from d 26 to 28 for measuring the coefficient of total tract apparent digestibility (CTTAD) of the nutrients. Blood samples were collected on d 14 and 28 for detecting the blood biochemical parameters. Two piglets per pen were slaughtered to collect the pancreas and intestinal digesta for evaluating the digestive enzyme activity and the coefficient of ileal apparent digestibility (CIAD) of the nutrients. On d 14 and 28, supplementation with 150-mg/kg GSPs significantly decreased the CTTAD of DM and CP in piglets. On d 14, GSPs supplementation at a concentration of 150 mg/kg led to a remarkable decrease in the CIAD of CP and gross energy (GE). On d 28, GSPs supplementation at a dose of 150 mg/kg generated a marked decline in the CIAD of DM, GE, CP and ether extract. Grape seed procyanidins supplementation at concentrations of 100 or 150 mg/kg inhibited the activities of lipase and amylase. In contrast, the jejunum mucosa maltase and sucrase activities increased due to the inclusion of GSPs at a concentration of 100 mg/kg in the piglet diet. Compared with the levels of the control group, the serum glucose and total protein levels were enhanced significantly by supplementation with GSPs at 100 mg/kg and reduced dramatically at 150 mg/kg. The serum diamine oxidase activity and endotoxin levels were decreased by GSPs supplementation in piglet diets. In conclusion, higher concentrations of GSPs in weaned piglet diets attenuated nutrient digestion and inhibited digestive enzyme activity; however, suitable concentrations of GSPs could promote brush-border enzyme activity, enhance serum glucose and total protein concentrations and decrease epithelial permeability.  相似文献   
118.
In the mink industry, feed costs are the largest variable expense and breeding for feed efficient animals is warranted. Implementation of selection for feed efficiency must consider the relationships between feed efficiency and the current selection traits BW and litter size. Often, feed intake (FI) is recorded on a cage with a male and a female and there is sexual dimorphism that needs to be accounted for. Study aims were to (1) model group recorded FI accounting for sexual dimorphism, (2) derive genetic residual feed intake (RFI) as a measure of feed efficiency, (3) examine the relationship between feed efficiency and BW in males (BWM) and females (BWF) and litter size at day 21 after whelping (LS21) in Danish brown mink and (4) investigate direct and correlated response to selection on each trait of interest. Feed intake records from 9574 cages, BW records on 16 782 males and 16 875 females and LS21 records on 6446 yearling females were used for analysis. Genetic parameters for FI, BWM, BWF and LS21 were obtained using a multivariate animal model, yielding sex-specific additive genetic variances for FI and BW to account for sexual dimorphism. The analysis was performed in a Bayesian setting using Gibbs sampling, and genetic RFI was obtained from the conditional distribution of FI given BW using genetic regression coefficients. Responses to single trait selection were defined as the posterior distribution of genetic superiority of the top 10% of animals after conditioning on the genetic trends. The heritabilities ranged from 0.13 for RFI in females and LS21 to 0.59 for BWF. Genetic correlations between BW in both sexes and LS21 and FI in both sexes were unfavorable, and single trait selection on BW in either sex showed increased FI in both sexes and reduced litter size. Due to the definition of RFI and high genetic correlation between BWM and BWF, selection on RFI did not significantly alter BW. In addition, selection on RFI in either sex did not affect LS21. Genetic correlation between sexes for FI and BW was high but significantly lower than unity. The high correlations across sex allowed for selection on standardized averages of animals’ breeding values (BVs) for RFI, FI and BW, which yielded selection responses approximately equal to the responses obtained using the sex-specific BVs. The results illustrate the possibility of selecting against RFI in mink with no negative effects on BW and litter size.  相似文献   
119.
Agricultural soils have tremendous potential to sequester soil organic carbon (SOC) and mitigate global climate change. However, agricultural land use has a profound impact on SOC dynamics, and few studies have explored how agricultural land use combined with soil conditions affect SOC changes throughout the soil profile. Based on a paired soil resampling campaign in the 1980s and 2010s, this study investigated the SOC changes of the soil profile caused by agricultural land use and the correlations with parent material and topography across the Chengdu Plain of China. The results showed that the SOC content increased by 3.78 g C/kg in the topsoil (0–20 cm), but decreased in the 20–40 cm and 40–60 cm soil layers by 0.90 and 1.26 g C/kg respectively. SOC increases in topsoil were observed for all types of agricultural land. Afforestation on former agricultural land also caused SOC decreases in the 20–60 cm soil layers, while SOC decreases only occurred in the 40–60 cm soil layer for agricultural land using a traditional crop rotation (i.e. traditional rice–wheat/rapeseed rotation) and with rice–vegetable rotations converted from the traditional rotations. For each agricultural land use, SOC decreases in deep soils only occurred in high relief areas and in soils formed from Q4 (Quaternary Holocene) grey‐brown alluvium and Q4 grey alluvium that had a relatively low soil bulk density and clay content. The results indicated that SOC change caused by agricultural land use was depth dependent and that the effects of agricultural land use on soil profile SOC dynamics varied with soil characteristics and topography. Subsoil SOC decreases were more likely to occur in high relief areas and in soils with low soil bulk density and low clay content.  相似文献   
120.
Soil organic carbon (SOC), the largest terrestrial carbon pool, plays a significant role in soil‐related ecosystem services such as climate regulation, soil fertility and agricultural production. However, its fate under land use change is difficult to predict. A major issue is that SOC comprised of numerous organic compounds with potentially distinct and poorly understood turnover properties. Here we use spatiotemporal measurements of the particulate (POC), mineral‐associated (MOC) and charred SOC (COC) fractions from 176 trials involving changes in land use to assess their underlying controls. We find that the initial pool sizes of each of the three fractions consistently and dominantly control their temporal dynamics after changes in land use (i.e. the baseline effects). The effects of climate, soil physicochemical properties and plant residues, however, are fraction‐ and time‐dependent. Climate and soil properties show similar importance for controlling the dynamics of MOC and COC, while plant residue inputs (in term of their quantity and quality) are much less important. For POC, plant residues and management practices (e.g. the frequency of pasture in crop‐pasture rotation systems) are substantially more important, overriding the influence of climate. These results demonstrate the pivotal role of measuring SOC composition and considering fraction‐specific stabilization and destabilization processes for effective SOC management and reliable SOC predictions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号